Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The first James Webb Space Telescope (JWST) Near InfraRed Camera imaging in the field of the galaxy cluster PLCK G165.7+67.0 (z= 0.35) uncovered a Type Ia supernova (SN Ia) atz= 1.78, called “SN H0pe.” Three different images of this one SN were detected as a result of strong gravitational lensing, each one traversing a different path in spacetime, thereby inducing a relative delay in the arrival of each image. Follow-up JWST observations of all three SN images enabled photometric and rare spectroscopic measurements of the two relative time delays. Following strict blinding protocols which oversaw a live unblinding and regulated postunblinding changes, these two measured time delays were compared to the predictions of seven independently constructed cluster lens models to measure a value for the Hubble constant,H0 = 71.8 + 9.2 − 8.1 km s−1Mpc−1. The range of admissibleH0values predicted across the lens models limits further precision, reflecting the well-known degeneracies between lens model constraints and time delays. It has long been theorized that a way forward is to leverage a standard candle, but this has not been realized until now. For the first time, the lens models are evaluated by their agreement with the SN absolute magnifications, breaking degeneracies and producing our best estimate,H0 = km s−1Mpc−1. This is the first precise measurement ofH0from a multiply imaged SN Ia and only the second from any multiply imaged SN.more » « less
-
Abstract Dust from core-collapse supernovae (CCSNe), specifically Type IIP supernovae (SNe IIP), has been suggested to be a significant source of the dust observed in high-redshift galaxies. CCSNe eject large amounts of newly formed heavy elements, which can condense into dust grains in the cooling ejecta. However, infrared (IR) observations of typical CCSNe generally measure dust masses that are too small to account for the dust production needed at high redshifts. Type IIn SNe (SNe IIn), classified by their dense circumstellar medium, are also known to exhibit strong IR emission from warm dust, but the dust origin and heating mechanism have generally remained unconstrained because of limited observational capabilities in the mid-IR (MIR). Here, we present a JWST/MIRI Medium Resolution Spectrograph spectrum of the SN IIn SN 2005ip nearly 17 yr post-explosion. The SN IIn SN 2005ip is one of the longest-lasting and most well-studied SNe observed to date. Combined with a Spitzer MIR spectrum of SN 2005ip obtained in 2008, this data set provides a rare 15 yr baseline, allowing for a unique investigation of the evolution of dust. The JWST spectrum shows the emergence of an optically thin silicate dust component (≳0.08M⊙) that is either not present or more compact/optically thick in the earlier Spitzer spectrum. Our analysis shows that this dust is likely newly formed in the cold, dense shell (CDS), between the forward and reverse shocks, and was not preexisting at the time of the explosion. There is also a smaller mass of carbonaceous dust (≳0.005M⊙) in the ejecta. These observations provide new insights into the role of SN dust production, particularly within the CDS, and its potential contribution to the rapid dust enrichment of the early Universe.more » « less
-
Light echoes give us a unique perspective on the nature of supernovae and nonterminal stellar explosions. Spectroscopy of light echoes can reveal details on the kinematics of the ejecta, probe asymmetry, and reveal details of ejecta interaction with circumstellar matter, thus expanding our understanding of these transient events. However, the spectral features arise from a complex interplay between the source photons, the reflecting dust geometry, and the instrumental setup and observing conditions. In this work, we present an improved method for modeling these effects in light echo spectra, one that relaxes the simplifying assumption of a light-curve-weighted sum, and instead estimates the true relative contribution of each phase of a transient event to the observed spectrum. We discuss our logic, the gains we obtain over light echo analysis methods used in the past, and prospects for further improvements. Lastly, we show how the new method improves our analysis of echoes from Tycho’s supernova (SN 1572) as an example.more » « less
-
ABSTRACT We present the most comprehensive catalogue to date of Type I superluminous supernovae (SLSNe), a class of stripped-envelope supernovae (SNe) characterized by exceptionally high luminosities. We have compiled a sample of 262 SLSNe reported through 2022 December 31. We verified the spectroscopic classification of each SLSN and collated an exhaustive data set of ultraviolet, optical, and infrared photometry totalling over 30 000 photometric detections. Using these data, we derive observational parameters such as the peak absolute magnitudes, rise and decline time-scales, as well as bolometric luminosities, temperature, and photospheric radius evolution for all SLSNe. Additionally, we model all light curves using a hybrid model that includes contributions from both a magnetar central engine and the radioactive decay of $$^{56}$$Ni. We explore correlations among various physical and observational parameters, and recover the previously found relation between ejecta mass and magnetar spin, as well as the overall progenitor pre-explosion mass distribution with a peak at $$\approx 6.5$$ M$$_\odot$$. We find no significant redshift dependence for any parameter, and no evidence for distinct subtypes of SLSNe. We find that only a small fraction of SLSNe, $$\lt 3$$ per cent, are best fit with a significant radioactive decay component $$\gtrsim 50$$ per cent. We provide several analytical tools designed to simulate typical SLSN light curves across a broad range of wavelengths and phases, enabling accurate K-corrections, bolometric scaling calculations, and inclusion of SLSNe in survey simulations or future comparison works.more » « less
-
Abstract We present new JWST/MIRI Medium Resolution Spectroscopy and Keck spectra of SN 1995N obtained in 2022–2023, more than 10,000 days after the supernova (SN) explosion. These spectra are among the latest direct detections of a core-collapse SN, both through emission lines in the optical and thermal continuum from infrared (IR) dust emission. The new IR data show that dust heating from radiation produced by the ejecta interacting with circumstellar matter is still present but greatly reduced from when SN 1995N was observed by the Spitzer Space Telescope and WISE in 2009/2010 and 2018, when the dust mass was estimated to be 0.4M⊙. New radiative-transfer modeling suggests that the dust mass and grain size may have increased between 2010 and 2023. The new data can alternatively be well fit with a dust mass of 0.4M⊙and a much reduced heating source luminosity. The new late-time spectra show unusually strong oxygen forbidden lines, stronger than the Hαemission. This indicates that SN 1995N may have exploded as a stripped-envelope SN, which then interacted with a massive H-rich circumstellar shell, changing it from intrinsically Type Ib/c to Type IIn. The late-time spectrum results when the reverse shock begins to excite the inner H-poor, O-rich ejecta. This change in the spectrum is rarely seen but marks the start of the transition from SN to SN remnant.more » « less
-
Abstract SN H0pe is a triply imaged supernova (SN) at redshiftz= 1.78 discovered using the James Webb Space Telescope. In order to classify the SN spectroscopically and measure the relative time delays of its three images (designated A, B, and C), we acquired NIRSpec follow-up spectroscopy spanning 0.6–5μm. From the high signal-to-noise spectra of the two bright images B and C, we first classify the SN, whose spectra most closely match those of SN 1994D and SN 2013dy, as a Type Ia SN. We identify prominent blueshifted absorption features corresponding to Siiiλ6355 and CaiiHλ3970 and Kλ3935. We next measure the absolute phases of the three images from our spectra, which allow us to constrain their relative time delays. The absolute phases of the three images, determined by fitting the three spectra to Hsiao07 SN templates, are days, days, and days for the brightest to faintest images. These correspond to relative time delays between Image A and Image B and between Image B and Image C of days and days, respectively. The SALT3-NIR model yields phases and time delays consistent with these values. After unblinding, we additionally explored the effect of using Hsiao07 template spectra for simulations through 80 days instead of 60 days past maximum, and found a small (11.5 and 1.0 days, respectively) yet statistically insignificant (∼0.25σand ∼0.1σ) effect on the inferred image delays.more » « less
-
Abstract We present panchromatic optical + near-infrared (NIR) + mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from +11 to +42 day past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mgii] 4.76μm, [Mgii] 9.71μm, [Neii] 12.81μm, and isolated Oi2.76μm that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae.more » « less
-
Abstract We observed the Seyfert 1 galaxy Mrk 817 during an intensive multiwavelength reverberation mapping campaign for 16 months. Here, we examine the behavior of narrow UV absorption lines seen in the Hubble Space Telescope/Cosmic Origins Spectrograph spectra, both during the campaign and in other epochs extending over 14 yr. We conclude that, while the narrow absorption outflow system (at −3750 km s−1with FWHM = 177 km s−1) responds to the variations of the UV continuum as modified by the X-ray obscurer, its total column density (logNH= 19.5 cm−2) did not change across all epochs. The adjusted ionization parameter (scaled with respect to the variations in the hydrogen-ionizing continuum flux) is logUH= −1.0 . The outflow is located at a distance smaller than 38 pc from the central source, which implies a hydrogen density ofnH> 3000 cm−3. The absorption outflow system only covers the continuum emission source and not the broad emission line region, which suggests that its transverse size is small (< 1016cm), with potential cloud geometries ranging from spherical to elongated along the line of sight.more » « less
-
We present the results of the XMM-Newton and NuSTAR observations taken as part of the ongoing, intensive multiwavelength monitoring program of the Seyfert 1 galaxy Mrk 817 by the AGN Space Telescope and Optical Reverberation Mapping 2 (AGN STORM 2) Project. The campaign revealed an unexpected and transient obscuring outflow, never before seen in this source. Of our four XMM-Newton/NuSTAR epochs, one fortuitously taken during a bright X-ray state has strong narrow absorption lines in the high-resolution grating spectra. From these absorption features, we determine that the obscurer is in fact a multiphase ionized wind with an outflow velocity of ∼5200 km s−1, and for the first time find evidence for a lower ionization component with the same velocity observed in absorption features in the contemporaneous Hubble Space Telescope spectra. This indicates that the UV absorption troughs may be due to dense clumps embedded in diffuse, higher ionization gas responsible for the X-ray absorption lines of the same velocity. We observe variability in the shape of the absorption lines on timescales of hours, placing the variable component at roughly 1000R_g if attributed to transverse motion along the line of sight. This estimate aligns with independent UV measurements of the distance to the obscurer suggesting an accretion disk wind at the inner broad line region. We estimate that it takes roughly 200 days for the outflow to travel from the disk to our line of sight, consistent with the timescale of the outflow's column density variations throughout the campaign.more » « less
An official website of the United States government
